Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
$(i) G, (ii) H, (iii) C, (iv) B, (v) C$
$(i) D, (ii) H, (iii) I, (iv) B, (v) G$
$(i) G, (ii) H, (iii) I, (iv) B, (v) G$
None of the above
Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity $X$ as follows: [position $]=\left[X^\alpha\right] ;[$ speed $]=\left[X^\beta\right]$; [acceleration $]=\left[X^{ p }\right]$; [linear momentum $]=\left[X^{ q }\right]$; [force $]=\left[X^{ I }\right]$. Then -
$(A)$ $\alpha+p=2 \beta$
$(B)$ $p+q-r=\beta$
$(C)$ $p-q+r=\alpha$
$(D)$ $p+q+r=\beta$
The dimensional formula for electric flux is $..........$
The dimensional formula for Boltzmann's constant is
Match List $I$ with List $II$
LIST$-I$ | LIST$-II$ |
$(A)$ Torque | $(I)$ $ML ^{-2} T ^{-2}$ |
$(B)$ Stress | $(II)$ $ML ^2 T ^{-2}$ |
$(C)$ Pressure of gradient | $(III)$ $ML ^{-1} T ^{-1}$ |
$(D)$ Coefficient of viscosity | $(IV)$ $ML ^{-1} T ^{-2}$ |
Choose the correct answer from the options given below
If $\mathrm{G}$ be the gravitational constant and $\mathrm{u}$ be the energy density then which of the following quantity have the dimension as that the $\sqrt{\mathrm{uG}}$ :