Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
$(i) G, (ii) H, (iii) C, (iv) B, (v) C$
$(i) D, (ii) H, (iii) I, (iv) B, (v) G$
$(i) G, (ii) H, (iii) I, (iv) B, (v) G$
None of the above
A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity ' $\eta$ ' flowing per second, through a tube of radius $r$ and length / and having a pressure difference $P$ across its ends, is
The dimensions of $K$ in the equation $W = \frac{1}{2}\,\,K{x^2}$ is
Given that $\int {{e^{ax}}\left. {dx} \right|} = {a^m}{e^{ax}} + C$, then which statement is incorrect (Dimension of $x = L^1$) ?
Force $F$ is given in terms of time $t$ and distance $x$ by $F = a\, sin\, ct + b\, cos\, dx$, then the dimension of $a/b$ is
A physcial quantity $x$ depends on quantities $y$ and $z$ as follows: $x = Ay + B\tan Cz$, where $A,\,B$ and $C$ are constants. Which of the following do not have the same dimensions